Measurement of the muon flux from 400 GeV/c protons interacting in a thick molybdenum/tungsten target The SHiP experiment is proposed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. About 1011 muons per spill will be produced in the dump. To design the experiment such that the muon-induced background is minimized, a precise knowledge of the muon spectrum is required. To validate the muon flux generated by our Pythia and GEANT4 based Monte Carlo simulation (FairShip), we have measured the muon flux emanating from a SHiP-like target at the SPS. This target, consisting of 13 interaction lengths of slabs of molybdenum and tungsten, followed by a 2.4 m iron hadron absorber was placed in the H4 400 GeV/c proton beam line. To identify muons and to measure the momentum spectrum, a spectrometer instrumented with drift tubes and a muon tagger were used. During a 3-week period a dataset for analysis corresponding to (3.27±0.07) × 1011 protons on target was recorded. This amounts to approximatively 1% of a SHiP spill. https://doi.org/10.1140/epjc/s10052-020-7788-y
The European Physical Journal C
D. Karpenkov, et al., Eur. Phys. J. C 80 (2020) 284.
Direct synthesis of p-type bulk BiCuSeO oxyselenides by reactive spark plasma sintering and related thermoelectric properties Herein, we demonstrate that BiCuSeO compound can be formed in bulk directly from the raw materials through reactive spark plasma sintering (RSPS) followed by ball milling and a second short spark plasma sintering step. Compared to BiCuSeO samples obtained by a conventional solid-state reaction, the electrical transport properties of the RSPS bulk were moderately affected by the sintering technique, while the lattice thermal conductivity was almost unaffected, and the figure of merit zT attained a value at 773 K comparable to state-of-the-art BiCuSeO. The results indicate a new scalable method for the preparation of oxyselenides. https://doi.org/10.1016/j.scriptamat.2020.06.043
Scripta Materialia
A. Novitskii, G. Guélou, A. Voronin, T. Mori, V. Khovaylo, Scr. Mater. 187 (2020) 317–322.
Pressure Dependence of Magnetic Properties in La(Fe,Si)13: Multistimulus Responsiveness of Caloric Effects by Modeling and Experiment For a better understanding of multistimuli-responsive caloric materials with a first-order transition and for optimization of their functional properties, it is necessary to predict the behavior of the material under changes of both magnetic field and pressure. Here, we design and build a special device that can provide a self-consistent set of parameters needed for the comprehensive characterization of multistimuli-responsive functional magnetic materials. Using this scientific instrument, a data set of simultaneously measured magnetization, M(T)H, and volume magnetostriction, ω(T)H, values are obtained for LaFe11.4Si1.6 with a first-order transition. Furthermore, based on simultaneously measured M(T) and ω(T) dependencies obtained at ambient pressure, we develop an approach that allows the behavior of magnetization under different pressures, M(T)P, to be described analytically. Additional parameters, such as compressibility, κ(T); thermal expansion coefficient, α(T); and magnetoelastic interaction or effective magnetovolume coupling constant, CMV, are determined. For verification of our developed model, direct measurements of magnetization under external pressure (up to P = 1 GPa) are carried out on the same sample as that used for simultaneous measurement of magnetization and magnetovolume effect. A comparison of simulated M(T)P dependencies with experimental M(T)P confirms that our approach provides a more realistic behavior of transition temperature under pressure, TC(P), than that of the TC(P) predicted by the Bean-Rodbell model; thus, this approach is more suitable for predicting the behavior of multistimuli-responsive caloric materials with first-order transitions under changes of both magnetic field and pressure. https://doi.org/10.1103/PhysRevApplied.13.034014
Physical Review Applied
D.Y. Karpenkov, A.Y. Karpenkov, K.P. Skokov, I.A. Radulov, M. Zheleznyi, T. Faske, O. Gutfleisch, Phys. Rev. Appl. 13 (2020) 034014.
Synthesis of FeNi tetrataenite phase by means of chemical precipitation FeNi L10 (tetrataenite) phase has great perspectives for hard magnetic materials production. In this paper we report on synthesis of this phase in chemically co-precipitated FeNi nanopowder by means of a thermal treatment procedure which includes cycling oxidation and reduction processes at 320 °C. The presence of the FeNi L10 phase in the samples was confirmed by magnetic measurements and differential scanning calorimetry analysis. https://doi.org/10.1016/j.jmmm.2017.11.040
Flexible Thermoelectric Polymer Composites Based on a Carbon Nanotubes Forest
Polymer‐based composites are of high interest in the field of thermoelectric (TE) materials because of their properties: abundance, low thermal conductivity, and nontoxicity. In applications, like TE for wearable energy harvesting, where low operating temperatures are required, polymer composites demonstrate compatible with the targeted specifications. The main challenge is reaching high TE efficiency. Fillers and chemical treatments can be used to enhance TE performance of the polymer matrix. The combined application of vertically aligned carbon nanotubes forest (VA‐CNTF) is demonstrated as fillers and chemical post‐treatment to obtain high‐efficiency TE composites, by dispersing VA‐CNTF into a poly (3,4‐ethylenedioxythiophene) polystyrene sulfonate matrix. The VA‐CNTF keeps the functional properties even in flexible substrates. The morphology, structure, composition, and functional features of the composites are thoroughly investigated. A dramatic increase of power factor is observed at the lowest operating temperature difference ever reported. The highest Seebeck coefficient and electrical conductivity are 58.7 µV K−1 and 1131 S cm−1, respectively. The highest power factor after treatment is twice as high in untreated samples. The results demonstrate the potential for the combined application of VA‐CNTF and chemical post‐treatment, in boosting the TE properties of composite polymers toward the development of high efficiency, low‐temperature, flexible TEs. https://doi.org/10.1002/adfm.201801246
Advanced Functional Materials
K. Yusupov, S. Stumpf, S. You, A. Bogach, P.M. Martinez, A. Zakhidov, U.S. Schubert, V. Khovaylo, A. Vomiero, Adv. Funct. Mater. 28 (2018) 1801246.
Plastically deformed Gd-X (X = Y, In, Zr, Ga, B) solid solutions for magnetocaloric regenerator of parallel plate geometry Despite significant progress in the study of materials undergoing first-order magnetic phase transitions accompanied by the so-called giant magnetocaloric effect (MCE), Gd metal still remains the most widely used material in prototypes of magnetic refrigerators due to its significant MCE, good machinability and reasonable mechanical and chemical stabilities. Alloying of Gd enables fine-tuning the Curie temperature of Gd-based solid solutions (all show second-order phase transitions), for graded magnetocaloric materials. Commonly, Gd packed spheres are used as a magnetocaloric working substance in the active magnetic regenerator (AMR) cycle. In this work, we show that the optimized stacking parallel-plate geometry of AMR bed made of Gd is more effective for application at frequencies 1–10 Hz then the packed spheres. We also give a short review on magnetocaloric properties of cold-rolled Gd-X (X = Y, In, Zr, Ga, B) solid solutions. These materials can be produced in the form of thin (∼100 μm) foils/plates to ensure rapid heat exchange between to the heat transfer fluid. Although the magnetocaloric effect decreases in the as-rolled foils, it can be recovered by thermal treatment of the final stacked-plates regenerators. Gd-Y, Gd-In and Gd-Zr solid solutions have magnetocaloric properties, comparable to the MCE of pure Gd in a wide temperature working span up to 37 K, 36 K, and 16 K respectively, which makes them suitable magnetocaloric material systems for testing the fundamental heat exchangers geometries at ambient temperature and in frequencies of 1–10 Hz. https://doi.org/10.1016/j.jallcom.2018.04.264
Journal of Alloys and Compounds
S. Taskaev, V. Khovaylo, D. Karpenkov, I. Radulov, M. Ulyanov, D. Bataev, A. Dyakonov, D. Gunderov, K. Skokov, O. Gutfleisch, J. Alloys Compd. 754 (2018) 207–214.
Intrinsic magnetic properties of hydrided and non-hydrided Nd5Fe17 single crystals We report on the spontaneous magnetization Ms, the exchange stiffness constant A and the magnetocrystalline anisotropy constants K1, K2, K3 and K4 of Nd5Fe17 and Nd5Fe17H16 single crystals. Field dependencies of magnetization M(H) were measured along a, b' and c principal crystallographic directions within the temperature range of 10–600 K and magnetic fields up to 40 T. Large anisotropies of spontaneous magnetization and high-field susceptibility were revealed for both compounds. The exchange stiffness parameter A was determined using Bloch's T3/2 law. In order to provide high accuracy detection of K1(T), K2(T), K3(T) and K4(T), we used two different approaches: the modified Sucksmith- Thompson technique and the Néel's phase method. https://doi.org/10.1016/j.jallcom.2018.01.239
Journal of Alloys and Compounds
D.Y. Karpenkov, K.P. Skokov, M.B. Lyakhova, I.A. Radulov, T. Faske, Y. Skourski, O. Gutfleisch, J. Alloys Compd. 741 (2018) 1012–1020.
A quantitative criterion for determining the order of magnetic phase transitions using the magnetocaloric effect The ideal magnetocaloric material would lay at the borderline of a first-order and a second-order phase transition. Hence, it is crucial to unambiguously determine the order of phase transitions for both applied magnetocaloric research as well as the characterization of other phase change materials. Although Ehrenfest provided a conceptually simple definition of the order of a phase transition, the known techniques for its determination based on magnetic measurements either provide erroneous results for specific cases or require extensive data analysis that depends on subjective appreciations of qualitative features of the data. Here we report a quantitative fingerprint of first-order thermomagnetic phase transitions: the exponent n from field dependence of magnetic entropy change presents a maximum of n > 2 only for first-order thermomagnetic phase transitions. This model-independent parameter allows evaluating the order of phase transition without any subjective interpretations, as we show for different types of materials and for the Bean–Rodbell model. https://doi.org/10.1038/s41467-018-05111-w
Nature Communications
J.Y. Law, V. Franco, L.M. Moreno-Ramírez, A. Conde, D.Y. Karpenkov, I. Radulov, K.P. Skokov, O. Gutfleisch, Nat. Commun. 9 (2018) 2680.
Rapid preparation of InxCo4Sb12 with a record-breaking ZT = 1.5: the role of the In overfilling fraction limit and Sb overstoichiometry Samples of indium-filled InxCo4Sb12 skutterudite were successfully synthesized by conventional induction melting without the use of evacuated quartz ampoules. Addition of In above the filling fraction limit (x ≈ 0.22) and adjustment of Sb excess in the induction-melted InxCo4Sb12 ingots allowed us to suppress formation of the unwanted CoSb2 phase in the sintered samples and effectively control the amount of the InSb impurity phase which precipitated in nanometer-sized regions along the grain boundaries of the main skutterudite phase. Measurements of the Seebeck coefficient, electrical conductivity and thermal conductivity of the InxCo4Sb12 samples with nominal In contents x = 0.2, 0.6, and 1.0 revealed a simultaneous increase in the electrical conductivity and decrease in the thermal conductivity. This results in the record value of the thermoelectric figure of merit ZT ≈ 1.5 for single-filled skutterudites which was attained in the In1Co4Sb12 sample at 725 K. https://doi.org/10.1039/C6TA09092C
Journal of Materials Chemistry A
V.V. Khovaylo, T.A. Korolkov, A.I. Voronin, M.V. Gorshenkov, A.T. Burkov, J. Mater. Chem. A. 5 (2017) 3541–3546.
Production and properties of metal-bonded La(Fe,Mn,Si)13Hx composite material Due to their excellent magnetocaloric properties hydrogenated La(Fe,Mn,Si)13 are considered as promising and cost efficient materials for active magnetic regenerators operating near room temperature. However, due to their poor mechanical and chemical stability this alloys can not be directly implemented in a cooling machine. A solution of the problem is the production of a composite La(Fe,Mn,Si)13Hx magnetocaloric materials by using adhesive-bonding techniques similar to those used for production of polymer-bonded permanent magnets. Upon bonding one has to consider that the thermal stability of the polymer binder is rather low. Main disadvantage of a polymer-bonded composite is the fatigue due to the mechanical stress caused by the large magnetovolume effect in La(Fe,Mn,Si)13Hx. Our article reports on a new method and equipment to produce metal-bonded magnetocaloric material using the low melting eutectic Field's alloy as a binder. A comprehensive investigation of the magnetocaloric, mechanical, chemical and thermal transport properties of polymer-bonded and metal-bonded magnetocaloric material is presented. https://doi.org/10.1016/j.actamat.2017.01.054
Acta Materialia
I.A. Radulov, D.Y. Karpenkov, K.P. Skokov, A.Y. Karpenkov, T. Braun, V. Brabänder, T. Gottschall, M. Pabst, B. Stoll, O. Gutfleisch, Acta Mater. 127 (2017) 389–399.
Bulk combinatorial analysis for searching new rare-earth free permanent magnets: Reactive crucible melting applied to the Fe-Sn binary system The reactive crucible melting method is known to be an efficient and low-cost bulk combinatorial synthesis technique to search for new phases. In this work, we tested this technique by investigating the Fe-Sn binary system. For high-throughput characterization, this synthesis technique was combined with energy dispersive x-ray spectroscopy as well as magneto-optical Kerr microscopy. The latter was used for identification of desired phases with uniaxial magnetic anisotropy. Reliability of the reactive crucible method was evaluated by comparison of the phase composition forming in the reactive crucible with phases appearing in conventionally melted samples and with the phases represented in the reported Fe-Sn phase diagram. It was found that the Fe5Sn3 phase, existing in the equilibrium phase diagram at 800 °C and forming in conventionally melted alloys, does not exist in the diffusion zone of the reactive crucible. The problem of 'missing phases' is discussed. In addition, we have shown that the anisotropy energy obtained by quantitative analysis of the uniaxial domain structure of Fe3Sn2 phase, gives the value of 1 MJ/m3, whereas K1 evaluated by conventional magnetometry is ~0.07 MJ/m3 only, by this demonstrating how erroneous the assessment of K1 from domain structure can be. Finally, a new unit cell is proposed for Fe5Sn3 phase, which is commensurately modulated by the orthorhombic unit cell with lattice parameters of a = 4.221 Å, b = 7.322 Å, c = 5.252 Å and the space group Pbcm(α00)0s0 with a modulation vector of q = (½,0,0). https://doi.org/10.1016/j.actamat.2017.09.036
Acta Materialia
B. Fayyazi, K.P. Skokov, T. Faske, D.Y. Karpenkov, W. Donner, O. Gutfleisch, Acta Mater. 141 (2017) 434–443.
Optimization of ball-milling process for preparation of Si–Ge nanostructured thermoelectric materials with a high figure of merit We report on the thermoelectric properties of nanostructured SiGe alloys which are well known to be reliable materials at high temperatures. Our aim was to optimize the synthesis parameters in order to simplify the manufacturing process. Here we show that 1 h ball milling process followed by consolidation of the mechanically alloyed nanopowders by spark plasma sintering is sufficient to prepare an n-type nanostructured SiGe bulk sample with a high figure of merit ZT ∼1.1 at 800 °C. https://doi.org/10.1016/j.scriptamat.2014.10.001
Magnetocaloric effect in "reduced" dimensions: Thin films, ribbons, and microwires of Heusler alloys and related compounds Room temperature magnetic refrigeration is an energy saving and environmentally‐friendly technology, which has developed rapidly from a basic idea to prototype devices. The performance of magnetic refrigerators crucially depends on the magnetocaloric properties and the geometry of the employed refrigerants. Here we review the magnetocaloric properties of Heusler alloys and related compounds with a high surface to volume ratio such as films, ribbons, and microwires, and compare them with their bulk counterparts. https://doi.org/10.1002/pssb.201451217
physica status solidi (b) – basic solid state physics
V.V. Khovaylo, V.V. Rodionova, S.N. Shevyrtalov, V. Novosad, Phys. Status Solidi 251 (2014) 2104–2113.
Inconvenient magnetocaloric effect in ferromagnetic shape memory alloys Critical analysis available in the literature experimental results on magnetocaloric effect in ferromagnetic shape memory alloys Ni–Mn–X (X = Ga, In, Sn, Sb) is given. Based on a model developed by Pecharsky et al. [22], it is shown that the isothermal magnetic field-induced entropy change in the Ni–Mn–X alloys should not greatly exceed 30 J/kg K. Considering thermodynamics of temperature- and magnetic field-induced martensitic transformations, it is demonstrated that a contribution of the structural subsystem to the magnetocaloric effect in the Ni–Mn–X alloys studied so far is irreversible in magnetic fields below 5 T. This makes ferromagnetic shape memory alloys an inconvenient system for the practical application in modern magnetic refrigeration technology. https://doi.org/10.1016/j.jallcom.2012.03.035
Journal of Alloys and Compounds
V. Khovaylo, J. Alloys Compd. 577 (2013) S362–S366.
Все наши публикации: Последнее обновление: 22 февраля, 2022
Gamzatov, A. G.; Batdalov, A. B.; Aliev, A. M.; Khizriev, S. K.; Khovaylo, V. V.; Ghotbi Varzaneh, A.; Kameli, P.; Abdolhosseini Sarsari, I.; Jannati, S. Anomalous Heat Transfer near the Martensite-Austenite Phase Transition in Ni50Mn28Ga22(Cu, Zn) (x = 0; 1.5) Alloys. Intermetallics2022, 143, 107491. https://doi.org/10.1016/j.intermet.2022.107491.
Koshkid'ko, Y. S.; Dilmieva, E. T.; Kamantsev, A. P.; Cwik, J.; Rogacki, K.; Mashirov, A. V.; Khovaylo, V. V.; Mejia, C. S.; Zagrebin, M. A.; Sokolovskiy, V. V.; Buchelnikov, V. D.; Ari-Gur, P.; Bhale, P.; Shavrov, V. G.; Koledov, V. V. Magnetocaloric Effect and Magnetic Phase Diagram of Ni-Mn-Ga Heusler Alloy in Steady and Pulsed Magnetic Fields. J. Alloys Compd.2022, 904, 164051. https://doi.org/10.1016/j.jallcom.2022.164051.
Adam, A. M.; Diab, A. K.; Tolan, M.; El-Qahtani, Z. M. H.; Refaat, A. A.; El-Hadek, M. A.; Elsehly, E. M.; El-Khouly, A.; Alharbi, A. N.; Khovaylo, V.; Ataalla, M. Outstanding Optical Properties of Thermally Grown (Bi2Se3)1-x(Bi2Te3)x Thin Films. Mater. Sci. Semicond. Process.2022, 143, 106557. https://doi.org/10.1016/j.mssp.2022.106557.
Komlev, A. S.; Karpenkov, D. Y.; Gimaev, R. R.; Chirkova, A.; Akiyama, A.; Miyanaga, T.; Hupalo, M. F.; Aguiar, D. J. M.; Carvalho, A. M. G.; Jiménez, M. J.; Cabeza, G. F.; Zverev, V. I.; Perov, N. S. Correlation between Magnetic and Crystal Structural Sublattices in Palladium-Doped FeRh Alloys: Analysis of the Metamagnetic Phase Transition Driving Forces. J. Alloys Compd.2022, 898, 163092. https://doi.org/10.1016/j.jallcom.2021.163092.
Roslyakov, S.; Yermekova, Z.; Trusov, G.; Khort, A.; Evdokimenko, N.; Bindiug, D.; Karpenkov, D.; Zhukovskyi, M.; Degtyarenko, A.; Mukasyan, A. One-Step Solution Combustion Synthesis of Nanostructured Transition Metal Antiperovskite Nitride and Alloy. Nano-Structures & Nano-Objects2021, 28, 100796. https://doi.org/10.1016/j.nanoso.2021.100796.
Elsehly, E.M.; El-Khouly, A.; Hassan, M.A.; Новицкий, А.П.; Карпенков, Д.Ю.; Пашкова, Д.С.; Чеченин, Н.Г.; Uchimoto, T.; Miki, H.; Пархоменко, Ю.Н.; Ховайло, В.В. Влияние углеродных нанотрубок на термоэлектрические свойства сплавов Гейслера p- и n-типа. Физика и техника полупроводников2022, 56 (2), 164. https://doi.org/10.21883/FTP.2022.02.51955.28
El-Khouly, A.; Adam, A. M.; Altowairqi, Y.; Serhiienko, I.; Chernyshova, E.; Ivanova, A.; Kurichenko, V. L.; Sedegov, A.; Karpenkov, D.; Novitskii, A.; Voronin, A.; Parkhomenko, Y.; Khovaylo, V. Transport and Thermoelectric Properties of Nb-Doped FeV0.64Hf0.16Ti0.2Sb Half-Heusler Alloys Synthesized by Two Ball Milling Regimes. J. Alloys Compd.2022, 890, 161838. https://doi.org/10.1016/j.jallcom.2021.161838
Abuova, F.; Inerbaev, T.; Abuova, A.; Merali, N.; Soltanbek, N.; Kaptagay, G.; Seredina, M.; Khovaylo, V. Structural, Electronic and Magnetic Properties of Mn2Co1-xVxZ (Z = Ga, Al) Heusler Alloys: An Insight from DFT Study. Magnetochemistry2021, 7 (12), 159. https://doi.org/10.3390/magnetochemistry7120159
Bhardwaj, V.; Bhattacharya, A.; Srivastava, S.; Khovaylo, V. V.; Sannigrahi, J.; Banerjee, N.; Mani, B. K.; Chatterjee, R. Strain Driven Emergence of Topological Non-Triviality in YPdBi Thin Films. Sci. Rep.2021, 11 (1), 7535. https://doi.org/10.1038/s41598-021-86936-2
Semenova, E. M.; Ivanov, D. V.; Lyakhova, M. B.; Kuznetsova, Y. V.; Karpenkov, D. Y.; Karpenkov, A. Y.; Ivanova, A. I.; Antonov, A. S.; Sdobnyakov, N. Y. Fractal Geometry of the Nano- and Magnetic Domain Structures of Sm–Co–Cu–Fe Ferromagnetic Alloy in a High Coercive State. Bull. Russ. Acad. Sci. Phys.2021, 85 (9), 955–958. https://doi.org/10.3103/S1062873821090252
Bykov, E.; Liu, W.; Skokov, K.; Scheibel, F.; Gutfleisch, O.; Taskaev, S.; Khovaylo, V.; Plakhotskiy, D.; Mejia, C. S.; Wosnitza, J.; Gottschall, T. Magnetocaloric Effect in the Laves-Phase Ho1−xDyxAl2 Family in High Magnetic Fields. Phys. Rev. Mater.2021, 5 (9), 095405. https://doi.org/10.1103/PhysRevMaterials.5.095405
Novitskii, A. P.; Khovaylo, V. V.; Mori, T. Recent Developments and Progress on BiCuSeO Based Thermoelectric Materials. Nanobiotechnology Reports2021, 16 (3), 294–307. https://doi.org/10.1134/S2635167621030150
Chernyshova, E.; Serhiienko, I.; Kolesnikov, E.; Voronin, A.; Zheleznyy, M.; Fedotov, A.; Khovaylo, V. Influence of NiO Nanoparticles on the Thermoelectric Properties of (ZnO)1–x(NiO)x Composites. Nanobiotechnology Reports2021, 16 (3), 381–386. https://doi.org/10.1134/S2635167621030034
Fedotov, A. K.; Pashkewich, A. V.; Khovailo, V. V.; Kharchenko, A. A.; Poddenezhnyi, E. N.; Bliznyuk, L. A.; Fedotova, V. V. Electric and Thermoelectric Properties of ZnO-Based Ceramics Doped with Iron and Cobalt. Nanobiotechnology Reports2021, 16 (3), 373–380. https://doi.org/10.1134/S2635167621030046
El-Khouly, A.; Adam, A. M.; Ibrahim, E. M. M.; Nafady, A.; Karpenkov, D.; Novitskii, A.; Voronin, A.; Khovaylo, V.; Elsehly, E. M. Mechanical and Thermoelectric Properties of FeVSb-Based Half-Heusler Alloys. J. Alloys Compd.2021, 161308. https://doi.org/10.1016/j.jallcom.2021.161308
Galkin, N. G.; Galkin, K. N.; Dotsenko, S. A.; Serhiienko, I. A.; Khovaylo, V. V.; Gutakovskii, A. K. Effect of Embedding of CrSi2 and β-FeSi2 Nanocrystals into n-Type Conductivity Silicon on the Transport and Thermal Generation of Carriers. Appl. Surf. Sci.2021, 566, 150620. https://doi.org/10.1016/j.apsusc.2021.150620
Suresh Kumar, G.; Srinivasan, R.; Karunakaran, G.; Kolesnikov, E.; Kim, M.; Karpenkov, D. Y. Microwave-Assisted Combustion Synthesis of Soft Ferromagnetic Spinel MFe2O4 (M = Ni, Mg, Zn) Nanoparticles Using Citrus Limon Fruit Extract as a Fuel. Appl. Phys. A2021, 127 (7), 546. https://doi.org/10.1007/s00339-021-04694-4
Komlev, A. S.; Karpenkov, D. Y.; Kiselev, D. A.; Ilina, T. S.; Chirkova, A.; Gimaev, R. R.; Usami, T.; Taniyama, T.; Zverev, V. I.; Perov, N. S. Ferromagnetic Phase Nucleation and Its Growth Evolution in FeRh Thin Films. J. Alloys Compd. 2021, 874, 159924. https://doi.org/10.1016/j.jallcom.2021.159924
Ahdida, C. et al. Sensitivity of the SHiP Experiment to Dark Photons Decaying to a Pair of Charged Particles. Eur. Phys. J. C 2021, 81 (5), 451. https://doi.org/10.1140/epjc/s10052-021-09224-3
Nguyen, T. H.; Konyukhov, Y.; Minh, N. Van; Karpenkov, D. Y.; Levina, V. V.; Karunakaran, G.; Buchirina, A. G. Magnetic Properties of Fe, Co and Ni Based Nanopowders Produced by Chemical-Metallurgy Method. Eurasian Chem. J.2021, 23 (1), 3. https://doi.org/10.18321/ectj1028
Blinov, M. I.; Chernenko, V. A.; Prudnikov, V. N.; Aseguinolaza, I. R.; Barandiaran, J. M.; Lahderanta, E.; Khovailo, V. V.; Granovskii, A. B. Magnetotransport Properties of Thin Ni49.7Fe17.4Co4.2Ga28.7 Films. J. Exp. Theor. Phys.2021, 132 (3), 457–462. https://doi.org/10.1134/S1063776121030146
Bhardwaj, V.; Bhattacharya, A.; Srivastava, S.; Khovaylo, V.V.; Sannigrahi, J.; Banerjee, N.; Mani, B. K.; Chatterjee, R. Strain Driven Emergence of Topological Non-Triviality in YPdBi Thin Films. Sci. Rep.2021, 11 (1), 7535. https://doi.org/10.1038/s41598-021-86936-2
Taskaev, S.; Khovaylo, V.; Ulyanov, M.; Bataev, D.; Basharova, A.; Kononova, M.; Plakhotskiy, D.; Bogush, M.; Zherebtsov, D.; Hu, Z. Magnetic Properties and Magnetocaloric Effect in Dy100–xYx Solid Solutions. AIP Adv.2021, 11 (1), 015014. https://doi.org/10.1063/9.0000191
Tukmakova, A.; Novotelnova, A.; Taskaev, S.; Miki, H.; Khovaylo, V. Simulation of Fe-Ti-Sb Thernary Phase Diagram at Temperatures above 900 K. Key Eng. Mater.2021, 877, 114–119. https://doi.org/10.4028/www.scientific.net/KEM.877.114
Taskaev, S.; Khovaylo, V.; Ulyanov, M.; Bataev, D.; Basharova, A.; Kononova, M.; Plakhotskiy, D.; Bogush, M.; Zherebtsov, D. Magnetic and Magnetocaloric Properties of As-Cast Gd2In. Lett. Mater.2021, 11 (1), 104–108. https://doi.org/10.22226/2410-3535-2021-1-104-108
El-Khouly, A.; Adam, A.M.; Novitskii, A.; Ibrahim, E.M.M.; Serhiienko, I.; Nafady, A.; Kutzhanov, M.K.; Karpenkov, D.; Voronin, A.; Khovaylo, V. Effects of Spark Plasma Sintering on Enhancing the Thermoelectric Performance of Hf–Ti Doped VFeSb Half-Heusler Alloys. J. Phys. Chem. Solids2021, 150, 109848. https://doi.org/10.1016/j.jpcs.2020.109848
Nikitin, S.A.; Pankratov, N.Y.; Smarzhevskaya, A.I.; Ćwik, J.; Koshkid'ko, Y.S.; Karpenkov, A.Y.; Karpenkov, D.Y.; Pastushenkov, Y.G.; Nenkov, K.; Rogacki, K. The Influence of Ferrimagnetic Structure on Magnetocaloric Effect in Dy2Fe10. J. Alloys Compd.2021, 854, 156214. https://doi.org/10.1016/j.jallcom.2020.156214
Nguyen, T.H.; Karunakaran, G.; Konyukhov, Y.V.; Minh, N. Van; Karpenkov, D.Y.; Burmistrov, I.N. Impact of Iron on the Fe–Co–Ni Ternary Nanocomposites Structural and Magnetic Features Obtained via Chemical Precipitation Followed by Reduction Process for Various Magnetically Coupled Devices Applications. Nanomaterials2021, 11 (2), 341. https://doi.org/10.3390/nano11020341
Dilmieva, E.T.; Koshkid'ko, Y.S.; Koledov, V.V.; Khovaylo, V.V.; Cwik, J.; Shavrov, V.G.; Sampath, V. Role of Magnetic and Temperature Cycling on Martensite Formation in Ni2.19Mn0.81Ga Single Crystals of a Heusler Alloy. J. Appl. Phys.2020, 127 (17), 175103. https://doi.org/10.1063/5.0003287
Jiang, J.; Khovaylo, V.V.; Louzguine-Luzgin, D.V. A Cu-Y-Al Glassy Alloy with Strong Beta Relaxation and Low Activation Energies for Structural Relaxation and Crystallization. Thermochim. Acta2020, 693, 178762. https://doi.org/10.1016/j.tca.2020.178762
Taskaev, S.; Khovaylo, V.; Ulyanov, M.; Bataev, D.; Danilova, E.; Plakhotskiy, D. Low Temperature Magnetocaloric Materials for Cryogenic Gas Liquefaction by Magnetic Cooling Technique. Key Eng. Mater.2020, 833, 176–180. https://doi.org/10.4028/www.scientific.net/KEM.833.176
Kargin, D. B.; Konyukhov, Y. V.; Biseken, A. B.; Lileev, A. S.; Karpenkov, D. Y. Structure, Morphology and Magnetic Properties of Hematite and Maghemite Nanopowders Produced from Rolling Scale. Izv. Ferr. Metall.2020, 63 (2), 146–154. https://doi.org/10.17073/0368-0797-2020-2-146-154
Maccari, F.; Karpenkov, D.Y.; Semenova, E.; Karpenkov, A.Y.; Radulov, I.A.; Skokov, K.P.; Gutfleisch, O. Accelerated Crystallization and Phase Formation in Fe40Ni40B20 by Electric Current Assisted Annealing Technique. J. Alloys Compd.2020, 836, 155338. https://doi.org/10.1016/j.jallcom.2020.155338
Gavrikov, I.S.; Karpenkov, D.Y.; Zheleznyi, M.V; Kamynin, A.V; Khotulev, E.S.; Bazlov, A.I. Effect of Ni Doping on Stabilization of Sm(Co1−xFex)5 Compound: Thermodynamic Calculation and Experiment. J. Phys. Condens. Matter2020, 32 (42), 425803. https://doi.org/10.1088/1361-648X/aba0db
Semenova, E.M.; Lyakhova, M.B.; Kuznetsova, Y.V; Karpenkov, D.Y.; Ivanova, A.I.; Karpenkov, A.Y.; Ivanov, D.V; Antonov, A.S.; Sdobnyakov, N.Y. A Comparative Analysis of Magnetic Properties and Microstructure of High Coercivity Sm(CoCuFe)5 Quasi-Binary Alloys in the Framework of Fractal Geometry. J. Phys. Conf. Ser.2020, 1658, 012050. https://doi.org/10.1088/1742-6596/1658/1/012050
Ahdida, C.; et al. Measurement of the Muon Flux from 400 GeV/c Protons Interacting in a Thick Molybdenum/Tungsten Target. Eur. Phys. J. C2020, 80 (3), 284. https://doi.org/10.1140/epjc/s10052-020-7788-y
Yakushko, E.V.; Kozhitov, L.V.; Muratov, D.G.; Karpenkov, D.Y.; Popkova, A.V. Managing the Magnetic Properties of NiCo/C Nanocomposites. Russ. Microelectron.2020, 49 (8), 543–553. https://doi.org/10.1134/S1063739720080119
El-Khouly, A.; Novitskii, A.; Serhiienko, I.; Kalugina, A.; Sedegov, A.; Karpenkov, D.; Voronin, A.; Khovaylo, V.; Adam, A.M. Optimizing the Thermoelectric Performance of FeVSb Half-Heusler Compound via Hf–Ti Double Doping. J. Power Sources2020, 477, 228768. https://doi.org/10.1016/j.jpowsour.2020.228768
Karpenkov, D.Y.; Karpenkov, A.Y.; Skokov, K.P.; Radulov, I.A.; Zheleznyi, M.; Faske, T.; Gutfleisch, O. Pressure Dependence of Magnetic Properties in La(FeSi)13: Multistimulus Responsiveness of Caloric Effect. Phys. Rev. Appl.2020, 13 (3), 034014. https://doi.org/10.1103/PhysRevApplied.13.034014
Kargin, D.B.; Konyukhov, Y.V.; Biseken, A.B.; Lileev, A.S.; Karpenkov, D.Y. Structure, Morphology and Magnetic Properties of Hematite and Maghemite Nanopowders Produced from Rolling Mill Scale. Steel Transl.2020, 50 (3), 151–158. https://doi.org/10.3103/S0967091220030055
Muratov, D.S.; Vanyushin, V.O.; Vorobeva, N.S.; Jukova, P.; Lipatov, A.; Kolesnikov, E.A.; Karpenkov, D.; Kuznetsov, D.V.; Sinitskii, A. Synthesis and Exfoliation of Quasi-1D (Zr,Ti)S3 Solid Solutions for Device Measurements. J. Alloys Compd.2020, 815, 152316. https://doi.org/10.1016/j.jallcom.2019.152316
El-Khouly, A.; Novitskii, A.; Adam, A.M.; Sedegov, A.; Kalugina, A.; Pankratova, D.; Karpenkov, D.; Khovaylo, V. Transport and Thermoelectric Properties of Hf-Doped FeVSb Half-Heusler Alloys. J. Alloys Compd.2020, 820, 153413. https://doi.org/10.1016/j.jallcom.2019.153413
Gorshenkov, M.V.; Karpenkov, D.Y.; Sundeev, R.V.; Cheverikin, V.V.; Shchetinin, I.V. Magnetic Properties of Mn-Al Alloy after HPT Deformation. Mater. Lett.2020, 272, 127864. https://doi.org/10.1016/j.matlet.2020.127864
Bazlov, A.I.; Parhomenko, M.S.; Mamzurina, O.I.; Karpenkov, D.Y.; Serhiienko, I.; Prosviryakov, A.S.; Zanaeva, E.N.; Louzguine-Luzgin, D.V. Effect of Manganese Addition on Thermal and Electrical Properties of Zr45Cu45Al10 Metallic Glass. J. Non. Cryst. Solids2020, 542, 120103. https://doi.org/10.1016/j.jnoncrysol.2020.120103
Kurichenko, V.L.; Karpenkov, D.Y.; Karpenkov, A.Y.; Lyakhova, M.B.; Khovaylo, V.V. Synthesis of FeNi Tetrataenite Phase by Means of Chemical Precipitation. J. Magn. Magn. Mater.2019, 470, 33–37. https://doi.org/10.1016/j.jmmm.2017.11.040
Seredina, M.; Gavrikov, I.; Gorshenkov, M.; Taskaev, S.; Dyakonov, A.; Komissarov, A.; Chatterjee, R.; Novosad, V.; Khovaylo, V. Magnetic and Transport Properties of As-Prepared Mn2CoGa. J. Magn. Magn. Mater.2019, 470, 55–58. https://doi.org/10.1016/j.jmmm.2017.12.043
Ashim, Y.Z.; Inerbaev, T.M.; Akilbekov, A.T.; Miki, H.; Takagi, T.; Khovaylo, V.V. Theoretical Modeling of the Thermoelectric Properties of Fe2Ti1–xVxSn Heusler Alloys. Semiconductors2019, 53 (7), 865–868. https://doi.org/10.1134/S1063782619070030
Taranova, A.I.; Novitskii, A.P.; Voronin, A.I.; Taskaev, S.V.; Khovaylo, V.V. Influence of V Doping on the Thermoelectric Properties of Fe2Ti1–xVxSn Heusler Alloys. Semiconductors2019, 53 (6), 768–771. https://doi.org/10.1134/S1063782619060277
Bharwdaj, A.; Jat, K.S.; Patnaik, S.; Parkhomenko, Y.N.; Nishino, Y.; Khovaylo, V.V. Current Research and Future Prospective of Iron-Based Heusler Alloys as Thermoelectric Materials. Nanotechnologies Russ.2019, 14 (7–8), 281–289. https://doi.org/10.1134/S1995078019040049
Voronin, A.I.; Novitskii, A.P.; Ashim, Y.Z.; Inerbaev, T.M.; Tabachkova, N.Y.; Bublik, V.T.; Khovaylo, V.V. Exploring the Origin of Contact Destruction in Tetradymite-Like-Based Thermoelectric Elements. J. Electron. Mater.2019, 48 (4), 1932–1938. https://doi.org/10.1007/s11664-019-07029-5
Pankratova, D.S.; Novitskii, A.P.; Kuskov, K.V.; Sergienko, I.A.; Leybo, D.V.; Burkov, A.T.; Konstantinov, P.P.; Khovaylo, V.V. Influence of La Doping on the Transport Properties of Bi1–xLaxCuSeO Oxyselenides. Semiconductors2019, 53 (5), 624–627. https://doi.org/10.1134/S1063782619050221
Voronin, A.I.; Serhiienko, I.A.; Ashim, Y.Z.; Kurichenko, V.L.; Novitskii, A.P.; Inerbaev, T.M.; Umetsu, R.; Khovaylo, V.V. Electrical Transport Properties of Nb and Ga Double Substituted Fe2VAl Heusler Compounds. Semiconductors2019, 53 (13), 1856–1859. https://doi.org/10.1134/S1063782619130207
Taskaev, S.; Skokov, K.; Karpenkov, D.; Khovaylo, V.; Ulyanov, M.; Bataev, D.; Dyakonov, A.; Gutfleisch, O. Influence of Severe Plastic Deformation on Magnetocaloric Effect of Dysprosium. J. Magn. Magn. Mater.2019, 479, 307–311. https://doi.org/10.1016/j.jmmm.2019.02.038
Novitskii, A.; Guélou, G.; Moskovskikh, D.; Voronin, A.; Zakharova, E.; Shvanskaya, L.; Bogach, A.; Vasiliev, A.; Khovaylo, V.; Mori, T. Reactive Spark Plasma Sintering and Thermoelectric Properties of Nd-Substituted BiCuSeO Oxyselenides. J. Alloys Compd.2019, 785, 96–104. https://doi.org/10.1016/j.jallcom.2019.01.183
Karunakaran, G.; Cho, E.-B.; Kumar, G.S.; Kolesnikov, E.; Karpenkov, D.Y.; Gopinathan, J.; Pillai, M.M.; Selvakumar, R.; Boobalan, S.; Gorshenkov, M.V. Sodium Dodecyl Sulfate Mediated Microwave Synthesis of Biocompatible Superparamagnetic Mesoporous Hydroxyapatite Nanoparticles Using Black Chlamys Varia Seashell as a Calcium Source for Biomedical Applications. Ceram. Int.2019, 45 (12), 15143–15155. https://doi.org/10.1016/j.ceramint.2019.04.256
Karpenkov, D.Y.; Skokov, K.P.; Radulov, I.A.; Gutfleisch, O.; Weischenberg, J.; Zhang, H. Anomalous Hall Effect in La(Fe,Co)13−xSix Compounds. Phys. Rev. B2019, 100 (9), 094445. https://doi.org/10.1103/PhysRevB.100.094445
Gavrikov, I.; Seredina, M.; Zheleznyy, M.; Shchetinin, I.; Karpenkov, D.; Bogach, A.; Chatterjee, R.; Khovaylo, V. Magnetic and Transport Properties of Mn2FeAl. J. Magn. Magn. Mater.2019, 478, 55–58. https://doi.org/10.1016/j.jmmm.2019.01.088
Seredina, M.; Gavrikov, I.; Karpenkov, D.; Zhelezny, M.; Bazlov, A.; Chatterjee, R.; Umetsu, R. Y.; Khovaylo, V. Transport Properties of Ferrimagnetic Mn2CoSn Heusler Alloy. J. Magn. Magn. Mater.2019, 485, 193–196. https://doi.org/10.1016/j.jmmm.2019.02.091
Shevyrtalov, S.; Miki, H.; Ohtsuka, M.; Khovaylo, V.; Rodionova, V. The Evolution of Martensitic Transformation in Ni-Mn-Ga/Al2O3 Polycrystalline 100-nm – 2-µm Films with Ni- and Ga-Excess. J. Alloys Compd.2018, 767, 538–543. https://doi.org/10.1016/j.jallcom.2018.07.144
Lyange, M.V.; Sokolovskiy, V.V.; Taskaev, S.V.; Karpenkov, D.Y.; Bogach, A.V.; Zheleznyi, M.V.; Shchetinin, I.V.; Khovaylo, V.V.; Buchelnikov, V.D. Effect of Disorder on Magnetic Properties and Martensitic Transformation of Co-Doped Ni-Mn-Al Heusler Alloy. Intermetallics2018, 102, 132–139. https://doi.org/10.1016/j.intermet.2018.09.008
Shevyrtalov, S.; Miki, H.; Ohtsuka, M.; Grunin, A.; Lyatun, I.; Mashirov, A.; Seredina, M.; Khovaylo, V.; Rodionova, V. Martensitic Transformation in Polycrystalline Substrate-Constrained and Freestanding Ni-Mn-Ga Films with Ni and Ga Excess. J. Alloys Compd.2018, 741, 1098–1104. https://doi.org/10.1016/j.jallcom.2018.01.255
Yusupov, K.; Zakhidov, A.; You, S.; Stumpf, S.; Martinez, P.M.; Ishteev, A.; Vomiero, A.; Khovaylo, V.; Schubert, U. Influence of Oriented CNT Forest on Thermoelectric Properties of Polymer-Based Materials. J. Alloys Compd.2018, 741, 392–397. https://doi.org/10.1016/j.jallcom.2018.01.010
Khovaylo, V.; Tereshina, I.; Politova, G.; Karpenkov, A.; Taskaev, S.; Palewski, T. Magnetostriction of Ferromagnetic Shape Memory Alloy Ni2.27Mn0.73Ga Studied in Magnetic Fields up to 10 T. J. Alloys Compd.2018, 741, 689–692. https://doi.org/10.1016/j.jallcom.2018.01.175
Yusupov, K.; Stumpf, S.; You, S.; Bogach, A.; Martinez, P.M.; Zakhidov, A.; Schubert, U.S.; Khovaylo, V.; Vomiero, A. Flexible Thermoelectric Polymer Composites Based on a Carbon Nanotubes Forest. Adv. Funct. Mater.2018, 28 (40), 1801246. https://doi.org/10.1002/adfm.201801246
Taskaev, S.; Skokov, K.; Khovaylo, V.; Karpenkov, D.; Ulyanov, M.; Bataev, D.; Dyakonov, A.; Gutfleisch, O. Effects of Severe Plastic Deformation on the Magnetic Properties of Terbium. AIP Adv.2018, 8 (4), 048103. https://doi.org/10.1063/1.4998292
Galkin, N.G.; Galkin, K.N.; Chernev, I.M.; Goroshko, D.L.; Chusovitin, E.A.; Shevlyagin, A.V.; Usenko, A.A.; Khovaylo, V.V. Comparison of the Structural, Optical and Thermoelectrical Properties of Ca Silicide Films with Variable Composition on Si Substrates. Defect Diffus. Forum2018, 386, 3–8. https://doi.org/10.4028/www.scientific.net/DDF.386.3
Goroshko, D.L.; Subbotin, E.Y.; Chusovitin, E.A.; Balagan, S.A.; Galkin, K.N.; Dotsenko, S.; Gutakovskii, A.; Khovaylo, V.V.; Usenko, A.A.; Nazarov, V.U.; Galkin, N.G. Thermoelectric Properties of Nanostructured Material Based on Si and GaSb. Defect Diffus. Forum2018, 386, 102–109. https://doi.org/10.4028/www.scientific.net/DDF.386.102
Usenko, A.; Moskovskikh, D.; Korotitskiy, A.; Gorshenkov, M.; Zakharova, E.; Fedorov, A.; Parkhomenko, Y.; Khovaylo, V. Thermoelectric Properties and Cost Optimization of Spark Plasma Sintered N-Type Si0.9Ge0.1-Mg2Si Nanocomposites. Scr. Mater.2018, 146, 295–299. https://doi.org/10.1016/j.scriptamat.2017.12.019
Semenova, E.; Lyakhova, M.; Karpenkov, D.; Kuznetsova, Y.; Karpenkov, A.; Skokov, K. Stress-Induced Magnetic Domain Structure in DyFe11Ti Compound. EPJ Web Conf.2018, 185, 04027. https://doi.org/10.1051/epjconf/201818504027
Omelyanchik, A.; Levada, E.; Ding, J.; Lendinez, S.; Pearson, J.; Efremova, M.; Bessalova, V.; Karpenkov, D.; Semenova, E.; Khlusov, I.; Litvinova, L.; Abakumov, M.; Majouga, A.; Perov, N.; Novosad, V.; Rodionova, V. Design of Conductive Microwire Systems for Manipulation of Biological Cells. IEEE Trans. Magn.2018, 54 (6), 1–5. https://doi.org/10.1109/TMAG.2018.2819823
Zhdanova, O.V.; Lyakhova, M.B.; Akimova, K.E.; Semenova, E.M.; Karpenkov, A.Y.; Karpenkov, D.Y. Magnetic Domain Structure of Cobalt and Iron Borides. Met. Sci. Heat Treat.2018, 60 (7–8), 534–538. https://doi.org/10.1007/s11041-018-0314-2
Taskaev, S.; Skokov, K.; Khovaylo, V.; Ulyanov, M.; Bataev, D.; Karpenkov, D.; Radulov, I.; Dyakonov, A.; Gutfleisch, O. Magnetocaloric Effect in Cold Rolled Foils of Gd100−xIn (x = 0, 1, 3). J. Magn. Magn. Mater.2018, 459, 46–48. https://doi.org/10.1016/j.jmmm.2017.12.052
Taskaev, S.; Khovaylo, V.; Karpenkov, D.; Radulov, I.; Ulyanov, M.; Bataev, D.; Dyakonov, A.; Gunderov, D.; Skokov, K.; Gutfleisch, O. Plastically Deformed Gd-X (X = Y, In, Zr, Ga, B) Solid Solutions for Magnetocaloric Regenerator of Parallel Plate Geometry. J. Alloys Compd.2018, 754, 207–214. https://doi.org/10.1016/j.jallcom.2018.04.264
Law, J.Y.; Franco, V.; Moreno-Ramírez, L.M.; Conde, A.; Karpenkov, D.Y.; Radulov, I.; Skokov, K.P.; Gutfleisch, O. A Quantitative Criterion for Determining the Order of Magnetic Phase Transitions Using the Magnetocaloric Effect. Nat. Commun.2018, 9 (1), 2680. https://doi.org/10.1038/s41467-018-05111-w
Karpenkov, D.Y.; Skokov, K.P.; Lyakhova, M.B.; Radulov, I.A.; Faske, T.; Skourski, Y.; Gutfleisch, O. Intrinsic Magnetic Properties of Hydrided and Non-Hydrided Nd5Fe17 Single Crystals. J. Alloys Compd.2018, 741, 1012–1020. https://doi.org/10.1016/j.jallcom.2018.01.239
Dilmieva, E.T.; KoshkidKo, Y.S.; Kamantsev, A.P.; Koledov, V.V.; Mashirov, A.V.; Shavrov, V.G.; Khovaylo, V.V.; Lyange, M.V.; Cwik, J.; Gonzalez-Legarreta, L.; Blanca Grande, H. Research of Magnetocaloric Effect For Ni-Mn-In-Co Heusler Alloys by the Direct Methods in Magnetic Fields Up to 14 T. IEEE Trans. Magn.2017, 53 (11), 1–5. https://doi.org/10.1109/TMAG.2017.2702577
Stebliy, M.E.; Jain, S.; Kolesnikov, A.G.; Ognev, A.V.; Samardak, A.S.; Davydenko, A.V.; Sukovatitcina, E.V.; Chebotkevich, L.A.; Ding, J.; Pearson, J.; Khovaylo, V.; Novosad, V. Vortex Dynamics and Frequency Splitting in Vertically Coupled Nanomagnets. Sci. Rep.2017, 7 (1), 1127. https://doi.org/10.1038/s41598-017-01222-4
Taskaev, S.; Skokov, K.; Karpenkov, D.; Khovaylo, V.; Ulyanov, M.; Bataev, D.; Dyakonov, A.; Fazlitdinova, A.; Gutfleisch, O. The Effect of Plastic Deformation on Magnetic and Magnetocaloric Properties of Gd-B Alloys. J. Magn. Magn. Mater.2017, 442, 360–363. https://doi.org/10.1016/j.jmmm.2017.06.077
Seredina, M.; Lyange, M.; Karpenkov, D.Y.; Khovaylo, V.; Chatterjee, R.; Varga, R. Magnetic and Transport Properties of Melt Spun Ribbons of Fe43.5Mn34Al15Ni7.5 Heusler Alloys. In 2017 IEEE International Magnetics Conference (INTERMAG); IEEE, 2017; pp 1–1. https://doi.org/10.1109/INTMAG.2017.8007663
Lega, P.; Koledov, V.; Orlov, A.; Kuchin, D.; Frolov, A.; Shavrov, V.; Martynova, A.; Irzhak, A.; Shelyakov, A.; Sampath, V.; Khovaylo, V.; Ari-Gur, P. Composite Materials Based on Shape-Memory Ti2NiCu Alloy for Frontier Micro- and Nanomechanical Applications. Adv. Eng. Mater.2017, 19 (8), 1700154. https://doi.org/10.1002/adem.201700154
Dilmieva, E.; Koshkidko, I.; Kamantsev, A. P.; Koledov, V.; Mashirov, A.; Shavrov, V.; Cwik, J.; Khovaylo, V.; Grande, B. Research of Magnetocaloric Effect of Ni-Mn-In-Co- Based Heusler Alloys by the Direct Method in Magnetic Fields up to 14 T. In 2017 IEEE International Magnetics Conference (INTERMAG); IEEE, 2017; pp 1–2. https://doi.org/10.1109/INTMAG.2017.8007634
Voronin, A.I.; Zueva, V.Y.; Karpenkov, D.Y.; Moskovskikh, D.O.; Novitskii, A.P.; Miki, H.; Khovaylo, V.V. Preparation and Study of the Thermoelectric Properties of Fe2TiSn1–xSix Heusler Alloys. Semiconductors2017, 51 (7), 891–893. https://doi.org/10.1134/S1063782617070363
Usenko, A.; Moskovskikh, D.; Gorshenkov, M.; Voronin, A.; Stepashkin, A.; Kaloshkin, S.; Arkhipov, D.; Khovaylo, V. Enhanced Thermoelectric Figure of Merit of p-Type Si0.8Ge0.2 Nanostructured Spark Plasma Sintered Alloys with Embedded SiO2 Nanoinclusions. Scr. Mater.2017, 127, 63–67. https://doi.org/10.1016/j.scriptamat.2016.09.010
Dilmieva, E.T.; Koshkid'ko, Y.S.; Koledov, V.V.; Kamantsev, A.P.; Mashirov, A.V.; Cwik, J.; Khovaylo, V.V.; Shavrov, V.G. Formation of a Martensitic Twins Structure in Ni2.16Mn0.84Ga Heusler Alloy by High Magnetic Fields under Adiabatic and Isothermal Conditions. Bull. Russ. Acad. Sci. Phys.2017, 81 (11), 1283–1288. https://doi.org/10.3103/S1062873817110077
Burkov, A.T.; Novikov, S.V.; Khovaylo, V.V.; Schumann, J. Energy Filtering Enhancement of Thermoelectric Performance of Nanocrystalline Cr1−xSi Composites. J. Alloys Compd.2017, 691, 89–94. https://doi.org/10.1016/j.jallcom.2016.08.117
Khovaylo, V.V.; Korolkov, T.A.; Voronin, A.I.; Gorshenkov, M.V.; Burkov, A.T. Rapid Preparation of InxCo4Sb12 with a Record-Breaking ZT = 1.5: The Role of the In Overfilling Fraction Limit and Sb Overstoichiometry. J. Mater. Chem. A2017, 5 (7), 3541–3546. https://doi.org/10.1039/C6TA09092C
Seredina, M.; Lyange, M.; Gorshenkov, M.; Shchetinin, I.; Taskaev, S.; Khovaylo, V. Influence of Annealing on Structural, Magnetic and Transport Properties of Melt Spun Ribbons of Co-Ni-Al Alloy. Mater. Today Proc.2017, 4 (3), 4707–4711. https://doi.org/10.1016/j.matpr.2017.04.056
Musabirov, I.; Safarov, I.; Nagimov, M.; Sharipov, I.; Koledov, V.; Khovailo, V.; Mulyukov, R. Plastic Deformation by Upsetting the Ni-Fe-Mn-Ga Alloy. Mater. Today Proc.2017, 4 (3), 4851–4855. https://doi.org/10.1016/j.matpr.2017.04.083
Shubin, A.; Karpenkov, D.; Stepashkin, A.; Arkhipov, D.; Taskaev, S.; Takagi, T.; Khovaylo, V. Structural Properties of Mg2(Si,Ge,Sn)-Based Thermoelectric Materials Prepared by Induction Melting Method. Solid State Phenom.2017, 266, 207–211. https://doi.org/10.4028/www.scientific.net/SSP.266.207
Khovaylo, V.; Lyange, M.; Seredina, M.; Gorshenkov, M.; Resnina, N.; Taskaev, S.; Rubanik, V.; Rubanik, V.; Chatterjee, R.; Varga, R. Structural and Mechanical Properties of Melt Spun Ribbons of Fe43.5Mn34Al15Ni7.5 Heusler Alloy. Mater. Today Proc.2017, 4 (3), 4702–4706. https://doi.org/10.1016/j.matpr.2017.04.055
Barmina, E.; Kosogor, A.; Khovaylo, V.; Gorshenkov, M.; Lyange, M.; Kuchin, D.; Dilmieva, E.; Koledov, V.; Shavrov, V.; Taskaev, S.; Chatterjee, R.; Varga, L. K. Thermomechanical Properties and Two-Way Shape Memory Effect in Melt Spun Ni57Mn21Al21Si1 Ribbons. J. Alloys Compd.2017, 696, 310–314. https://doi.org/10.1016/j.jallcom.2016.11.311
Porokhin, S.; Shvanskaya, L.; Khovaylo, V.; Vasiliev, A. Effect of NaF Doping on the Thermoelectric Properties of Ca3Co4O9. J. Alloys Compd.2017, 695, 2844–2849. https://doi.org/10.1016/j.jallcom.2016.11.405
Karpenkov, D.Y.; Bogomolov, A.A.; Solnyshkin, A.V.; Karpenkov, A.Y.; Shevyakov, V.I.; Belov, A.N. Multilayered Ceramic Heterostructures of Lead Zirconate Titanate and Nickel-Zinc Ferrite for Magnetoelectric Sensor Elements. Sensors Actuators A Phys.2017, 266, 242–246. https://doi.org/10.1016/j.sna.2017.09.011
Franco, V.; Law, J.Y.; Conde, A.; Brabander, V.; Karpenkov, D.Y.; Radulov, I.; Skokov, K.; Gutfleisch, O. Predicting the Tricritical Point Composition of a Series of LaFeSi Magnetocaloric Alloys via Universal Scaling. J. Phys. D. Appl. Phys.2017, 50 (41), 414004. https://doi.org/10.1088/1361-6463/aa8792
Radulov, I.A.; Karpenkov, D.Y.; Specht, M.; Braun, T.; Karpenkov, A.Y.; Skokov, K.P.; Gutfleisch, O. Heat Exchangers From Metal-Bonded La(Fe,Mn,Si)13Hx Powder. IEEE Trans. Magn.2017, 53 (11), 1–7. https://doi.org/10.1109/TMAG.2017.2698022
Fayyazi, B.; Skokov, K.P.; Faske, T.; Karpenkov, D.Y.; Donner, W.; Gutfleisch, O. Bulk Combinatorial Analysis for Searching New Rare-Earth Free Permanent Magnets: Reactive Crucible Melting Applied to the Fe-Sn Binary System. Acta Mater.2017, 141, 434–443. https://doi.org/10.1016/j.actamat.2017.09.036
Karpenkov, D.Y.; Muratov, D.G.; Kozitov, L.V.; Skokov, K.P.; Karpenkov, A.Y.; Popkova, A.V.; Gutfleisch, O. Infrared Heating Mediated Synthesis and Characterization of FeCo/C Nanocomposites. J. Magn. Magn. Mater.2017, 429, 94–101. https://doi.org/10.1016/j.jmmm.2017.01.008
Radulov, I.A.; Karpenkov, D.Y.; Skokov, K.P.; Karpenkov, A.Y.; Braun, T.; Brabänder, V.; Gottschall, T.; Pabst, M.; Stoll, B.; Gutfleisch, O. Production and Properties of Metal-Bonded La(Fe,Mn,Si)13H Composite Material. Acta Mater.2017, 127, 389–399. https://doi.org/10.1016/j.actamat.2017.01.054
Radulov, I.A.; Specht, M.; Braun, T.; Karpenkov, D.Y.; Skokov, K.; Gutfleisch, O. Magnetocaloric Heat Exchangers Made from Metal-Bonded La(Fe,Mn,Si)13Hx Powder. In 2017 IEEE International Magnetics Conference (INTERMAG); IEEE, 2017; pp 1–1. https://doi.org/10.1109/INTMAG.2017.8007632
Franco, V.; Law, J.; Conde, A.; Brabander, V.; Karpenkov, D.Y.; Radulov, I.A.; Skokov, K.; Gutfleisch, O. Modification of the Field Dependence and Scaling of the Magnetocaloric Effect in LaFeSi across the Tricritical Point. In 2017 IEEE International Magnetics Conference (INTERMAG); IEEE, 2017; pp 1–2. https://doi.org/10.1109/INTMAG.2017.8007631
Zavareh, M.G.; Skourski, Y.; Skokov, K.P.; Karpenkov, D.Y.; Zvyagina, L.; Waske, A.; Haskel, D.; Zhernenkov, M.; Wosnitza, J.; Gutfleisch, O. Direct Measurement of the Magnetocaloric Effect in La(Fe,Si,Co)13. Phys. Rev. Appl.2017, 8 (1), 014037. https://doi.org/10.1103/PhysRevApplied.8.014037
Karpenkov, D.Y.; Skokov, K.P.; Liu, J.; Karpenkov, A.Y.; Semenova, E.M.; Airiyan, E.L.; Pastushenkov, Y.G.; Gutfleisch, O. Corrigendum to "Adiabatic Temperature Change of Micro- and Nanocrystalline Y2Fe17 Heat-Exchangers for Magnetic Cooling" [J. Alloys Compd. 668 (2016) 40–45]. J. Alloys Compd.2017, 695, 3779. https://doi.org/10.1016/j.jallcom.2016.11.229
Shao, Y.; Liu, J.; Zhang, M.; Yan, A.; Skokov, K.P.; Karpenkov, D.Y.; Gutfleisch, O. High-Performance Solid-State Cooling Materials: Balancing Magnetocaloric and Non-Magnetic Properties in Dual Phase La-Fe-Si. Acta Mater.2017, 125, 506–512. https://doi.org/10.1016/j.actamat.2016.12.014
Taskaev, S.V.; Skokov, K.P.; Khovaylo, V.V.; Gorshenkov, M.V.; Vasiliev, A.N.; Volkova, O.S.; Bataev, D.S.; Pellenen, A.P.; Gutfleisch, O. Magnetic Properties of Nd and Sm Rare-Earth Metals After Severe Plastic Deformation. IEEE Magn. Lett.2016, 7, 1–4. https://doi.org/10.1109/LMAG.2016.2546853
Seredina, M.; Lyange, M.; Khovaylo, V.V.; Taskaev, S.; Miki, H.; Takagi, T.; Singh, R.; Chatterjee, R.; Varga, L.K. Electric Resistivity and Hall Effect of Ni(Co)-Mn-Al Melt Spun Ribbons. Mater. Sci. Forum2016, 845, 65–68. https://doi.org/10.4028/www.scientific.net/MSF.845.65
Usenko, A.; Moskovskikh, D.; Korotitskiy, A.; Gorshenkov, M.; Voronin, A.; Arkhipov, D.; Lyange, M.; Isachenko, G.; Khovaylo, V. Thermoelectric Properties of N-Type Si0,8Ge0,2-FeSi2 Multiphase Nanostructures. J. Electron. Mater.2016, 45 (7), 3427–3432. https://doi.org/10.1007/s11664-016-4487-4
Novitskii, A.P.; Voronin, A.I.; Usenko, A.A.; Gorshenkov, M.V.; Khovaylo, V.V.; Shvanskaya, L.V.; Burkov, A.T.; Vasiliev, A.N. Influence of Sodium Fluoride Doping on Thermoelectric Properties of BiCuSeO. J. Electron. Mater.2016, 45 (3), 1705–1710. https://doi.org/10.1007/s11664-015-4181-y
Taskaev, S.; Skokov, K.; Karpenkov, D.; Semenova, E.M.; Khovaylo, V.V.; Dudorov, A.E.; Kocherov, A. Search the Hard Magnetic Tetrataenite Phase in the Fragments of Chelyabinsk Meteorite. Mater. Sci. Forum2016, 845, 265–268. https://doi.org/10.4028/www.scientific.net/MSF.845.265
Khovaylo, V.; Skokov, K.; Taskaev, S.; Karpenkov, A.; Karpenkov, D.; Airiyan, E. Direct Measurements of Magnetocaloric Effect in a Single Crystalline Ni2.13Mn0.81Ga1.06 Heusler Alloy. Mater. Sci. Forum2016, 872, 38–42. https://doi.org/10.4028/www.scientific.net/MSF.872.38
Taskaev, S.; Skokov, K.; Karpenkov, D.; Khovaylo, V.V.; Ulyanov, M.N.; Bataev, D.; Pellenen, A.; Fazlitdinova, A.G. The Effect of Plastic Deformation on Magnetic and Magnetocaloric Properties of Gd90Ga10 Alloy. Mater. Sci. Forum2016, 845, 56–60. https://doi.org/10.4028/www.scientific.net/MSF.845.56
Yusupov, K.; Khovaylo, V.; Muratov, D.; Kozhitov, L.; Arkhipov, D.; Pryadun, V.; Vasiliev, A. Thermoelectric Properties of Polyacrylonitrile-Based Nanocomposite. J. Electron. Mater.2016, 45 (7), 3440–3444. https://doi.org/10.1007/s11664-016-4503-8
Taskaev, S.; Skokov, K.; Karpenkov, D.; Khovaylo, V.V.; Buchelnikov, V.D.; Zherebtsov, D.A.; Ulyanov, M.; Bataev, D.; Pellenen, A.; Fazlitdinova, A. The Influence of Cold Rolling on Magnetocaloric Properties of Gd100–xYx (x = 0, 5, 10, 15) Alloys. Solid State Phenom.2015, 233–234, 238–242. https://doi.org/10.4028/www.scientific.net/SSP.233-234.238
Taskaev, S.; Skokov, K.; Karpenkov, D.; Khovaylo, V.V.; Buchelnikov, V.D.; Zherebtsov, D.A.; Ulyanov, M.; Bataev, D.; Galimov, D.; Pellenen, A. Magnetocaloric Properties of Cold Rolled Gd100–xZrx (x = 0, 1, 2, 3) Intermetallic Alloys. Solid State Phenom.2015, 233–234, 220–224. https://doi.org/10.4028/www.scientific.net/SSP.233-234.220
Rodionova, V.; Shevyrtalov, S.; Chichay, K.; Okubo, A.; Kainuma, R.; Umetsu, R. Y.; Ohtsuka, M.; Bozhko, A.; Golub, V.; Gorshenkov, M.; Lyange, M.; Khovaylo, V.V. Temperature Dependent Magnetic and Structural Properties of Co2(Fe,Ti)Ga Thin Films. Solid State Phenom.2015, 233–234, 674–677. https://doi.org/10.4028/www.scientific.net/SSP.233-234.674
Ding, J.; Jain, S.; Pearson, J.E.; Lendinez, S.; Khovaylo, V.; Novosad, V. Dynamic Control of Metastable Remanent States in Mesoscale Magnetic Elements. J. Appl. Phys.2015, 117 (17), 17A707. https://doi.org/10.1063/1.4906959
Taskaev, S.; Skokov, K.; Khovaylo, V.; Gunderov, D.; Karpenkov, D. Influence of Severe Plastic Deformation on Magnetic Properties of Fe48Ni48Zr4, Fe49.5Co16.5B33Ta and Co80Zr16B4 Alloys. Phys. Procedia2015, 75, 1404–1409. https://doi.org/10.1016/j.phpro.2015.12.158
Kamantsev, A.P.; Koledov, V.V.; Mashirov, A.V.; Dilmieva, E.T.; Shavrov, V.G.; Cwik, J.; Los, A.S.; Nizhankovskii, V.I.; Rogacki, K.; Tereshina, I.S.; Koshkid'ko, Y.S.; Lyange, M.V.; Khovaylo, V.V.; Ari-Gur, P. Magnetocaloric and Thermomagnetic Properties of Ni2.18Mn0.82Ga Heusler Alloy in High Magnetic Fields up to 140 KOe. J. Appl. Phys.2015, 117 (16), 163903. https://doi.org/10.1063/1.4918914
Palacios, E.; Bartolomé, J.; Wang, G.; Burriel, R.; Skokov, K.; Taskaev, S.; Khovaylo, V. Analysis of the Magnetocaloric Effect in Heusler Alloys: Study of Ni50CoMn36Sn13 by Calorimetric Techniques. Entropy2015, 17 (3), 1236–1252. https://doi.org/10.3390/e17031236
Taskaev, S.; Skokov, K.; Khovaylo, V.; Buchelnikov, V.; Pellenen, A.; Karpenkov, D.; Ulyanov, M.; Bataev, D.; Usenko, A.; Lyange, M.; Gutfleisch, O. Effect of Severe Plastic Deformation on the Specific Heat and Magnetic Properties of Cold Rolled Gd Sheets. J. Appl. Phys.2015, 117 (12), 123914. https://doi.org/10.1063/1.4916377
Taskaev, S.; Skokov, K.; Karpenkov, D.; Khovaylo, V.; Buchelnikov, V.; Zherebtsov, D.; Ulyanov, M.; Bataev, D.; Drobosyuk, M.; Pellenen, A. Magnetocaloric Properties of Severe Plastic Deformed Gd100–xYx Alloys. Acta Phys. Pol. A2015, 127 (2), 641–643. https://doi.org/10.12693/APhysPolA.127.641
Usenko, A.A.; Moskovskikh, D.O.; Gorshenkov, M.V.; Korotitskiy, A.V.; Kaloshkin, S.D.; Voronin, A.I.; Khovaylo, V.V. Optimization of Ball-Milling Process for Preparation of Si–Ge Nanostructured Thermoelectric Materials with a High Figure of Merit. Scr. Mater.2015, 96, 9–12. https://doi.org/10.1016/j.scriptamat.2014.10.001
Lyange, M.V.; Gorshenkov, M.V.; Bogach, A.V.; Ohtsuka, M.; Miki, H.; Takagi, T.; Khovaylo, V.V. Structural and Transport Properties of Ni45Mn40In15 Thin Films. Solid State Phenom.2015, 233–234, 670–673. https://doi.org/10.4028/www.scientific.net/SSP.233-234.670
Kosogor, A.; Lyange, M.; Zadorozhnyy, M.; Miki, H.; Takagi, T.; L'vov, V.A.; Khovaylo, V. Influence of Different Mechanisms of Martensite Aging on the Features of Martensitic Transformations. Phys. status solidi2015, 252 (12), 2758–2761. https://doi.org/10.1002/pssb.201552324
Kosogor, A.; Sokolovskiy, V.V.; L'vov, V.A.; Khovaylo, V.V. Martensitic Transformation in Shape Memory Crystal with Defects: Monte Carlo Simulations and Landau Theory. Phys. status solidi2015, 252 (10), 2309–2316. https://doi.org/10.1002/pssb.201552313
Voronin, A.I.; Baryshev, G.K.; Bozhko, Y.V.; Usenko, A.A.; Zueva, V.Y.; Litvinova, K.I.; Petrova, I.V.; Seredina, M.A.; Khovaylo, V.V. Features of Sintering Process of Ni(M)Sn (M = Ti, Zr, Hf) Heusler Alloys. Bull. Lebedev Phys. Inst.2015, 42 (7), 221–224. https://doi.org/10.3103/S1068335615070064
Kamantsev, A.P.; Koledov, V.V.; Mashirov, A.V.; Dilmieva, E.T.; Shavrov, V.G.; Cwik, J.; Tereshina, I.S.; Lyange, M.V.; Khovaylo, V.V.; Porcari, G.; Topic, M. Properties of Metamagnetic Alloy Fe48Rh52 in High Magnetic Fields. Bull. Russ. Acad. Sci. Phys.2015, 79 (9), 1086–1088. https://doi.org/10.3103/S1062873815090105
Singh, R.; Ingale, B.; Varga, L.K.; Khovaylo, V.V.; Taskaev, S.; Chatterjee, R. Large Exchange Bias in Polycrystalline Ribbons of Ni56Mn21Al22Si1. J. Magn. Magn. Mater.2015, 394, 143–147. https://doi.org/10.1016/j.jmmm.2015.06.049
Taskaev, S.V.; Skokov, K.P.; Khovaylo, V.V.; Gunderov, D.; Karpenkov, D.Y.; Gutfleisch, O. The Influence of Severe Plastic Deformation on Magnetic Properties of Ni48Fe48Zr4, Fe1.5Co0.5BTa0.3 and Co80Zr16B4. In 2015 IEEE Magnetics Conference (INTERMAG); IEEE, 2015; pp 1–1. https://doi.org/10.1109/INTMAG.2015.7156520
Shevyrtalov, S.; Chichay, K.; Ershov, P.; Khovaylo, V.; Zhukov, A.; Zhukova, V.; Rodionova, V. Temperature Dependent Magnetic and Structural Properties of Ni-Mn-Ga Heusler Alloy Glass-Coated Microwires. Acta Phys. Pol. A2015, 127 (2), 603–605. https://doi.org/10.12693/APhysPolA.127.603
Khovaylo, V.V.; Rodionova, V.V.; Shevyrtalov, S.N.; Novosad, V. Magnetocaloric Effect in "Reduced" Dimensions: Thin Films, Ribbons, and Microwires of Heusler Alloys and Related Compounds. Phys. status solidi2014, 251 (10), 2104–2113. https://doi.org/10.1002/pssb.201451217
Singh, R.; Ingale, B.; Varga, L.K.; Khovaylo, V.V.; Chatterjee, R. Large Exchange-Bias in Ni55Mn19Al24Si2 Polycrystalline Ribbons. Phys. B Condens. Matter2014, 448, 143–146. https://doi.org/10.1016/j.physb.2014.03.043
Volkova, O.S.; Vasiliev, A.N.; Khovailo, V.V. Quantum Ground States of Copper Nitrates. Moscow Univ. Phys. Bull.2014, 69 (6), 457–467. https://doi.org/10.3103/S0027134914060186
Khovaylo, V.V.; Koledov, V.V.; Kuchin, D.I.; Shavrov, V.G.; Resnina, N.N.; Miki, H.; Sunol, J.J.; Hernando, B. Structural and Magnetic Properties of Melt-Spun Ni-Mn(Fe)-Ga Ferromagnetic Shape Memory Ribbons. IEEE Trans. Magn.2014, 50 (4), 1–3. https://doi.org/10.1109/TMAG.2013.2291908
Borisova, N.M.; Gorshenkov, M.V.; Koval', A.A.; Mozul', K.A.; Khovailo, V.V.; Shurinova, E.V. Structural and Magnetic Size Effects in Nanodisperse ZnxFe3–xO4 Ferrite Systems. Phys. Solid State2014, 56 (7), 1334–1337. https://doi.org/10.1134/S1063783414070051
Lyange, M.; Khovaylo, V.; Singh, R.; Srivastava, S.K.; Chatterjee, R.; Varga, L.K. Phase Transitions and Magnetic Properties of Ni(Co)–Mn–Al Melt-Spun Ribbons. J. Alloys Compd.2014, 586, S218–S221. https://doi.org/10.1016/j.jallcom.2013.02.158
Polyakov, P.I.; Slyusarev, V.V.; Kokorin, V.V.; Konoplyuk, S.M.; Semenova, Y.S.; Khovaylo, V.V. Volume Change During Intermartensitic Transformations in Ni-Mn-Ga Alloy. J. Mater. Eng. Perform.2014, 23 (9), 3180–3183. https://doi.org/10.1007/s11665-014-1095-4
Sokolovskiy, V.V.; Buchelnikov, V.D.; Khovaylo, V.V.; Taskaev, S.V.; Entel, P. Tuning Magnetic Exchange Interactions to Enhance Magnetocaloric Effect in Ni50Mn34In16 Heusler Alloy: Monte Carlo and Ab Initio Studies. Int. J. Refrig.2014, 37, 273–280. https://doi.org/10.1016/j.ijrefrig.2013.05.017
Kokorin, V.V.; Koledov, V.V.; Shavrov, V.G.; Konoplyuk, S.M.; Thürer, S.; Troyanovsky, D.A.; Maier, H.J.; Khovaylo, V.V. Effect of Thermal Cycling on the Martensitic Transformation in Ni-Mn-In Alloys. J. Appl. Phys.2014, 116 (10), 103515. https://doi.org/10.1063/1.4895585
Kamantsev, A.; Koledov, V.; Dilmieva, E.; Mashirov, A.; Shavrov, V.; Cwik, J.; Tereshina, I.; Khovaylo, V.; Lyange, M.; Gonzalez-Legarreta, L.; Hernando, B.; Ari-Gur, P. Thermomagnetic and Magnetocaloric Properties of Metamagnetic Ni-Mn-In-Co Heusler Alloy in Magnetic Fields up to 140 KOe. EPJ Web Conf.2014, 75, 04008. https://doi.org/10.1051/epjconf/20147504008
Buchelnikov, V.; Sokolovskiy, V.; Zagrebin, M.; Taskaev, S.; Khovaylo, V.; Entel, P. The Supercell Scaling Investigation of Magnetic Properties in Ni-Mn-X (X = Ga, In, Sn, Sb) Heusler Alloys by Means of First-Principles Methods. MRS Proc.2013, 1581, mrss13-1581-ccc05-01. https://doi.org/10.1557/opl.2013.925